If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6y^2+35y-50=0
a = 6; b = 35; c = -50;
Δ = b2-4ac
Δ = 352-4·6·(-50)
Δ = 2425
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2425}=\sqrt{25*97}=\sqrt{25}*\sqrt{97}=5\sqrt{97}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(35)-5\sqrt{97}}{2*6}=\frac{-35-5\sqrt{97}}{12} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(35)+5\sqrt{97}}{2*6}=\frac{-35+5\sqrt{97}}{12} $
| 6=y/3-10 | | 10(12x+3)=20(2x-1) | | -4+3h=8+7h+8h | | 10y-13=18+10y | | |6x^2+12x|=|5x+3| | | X3+9x2+24x+20=0 | | 4x/3-20=100 | | 2+6x=1-(x) | | -4+3h=8+7+8h | | -4(m+2)-m-5=-5(m+5)+12 | | -2+8q=4+8+10q | | x(x+2)+6=x2+5x-11 | | 8-5t=-8-t | | 24x=1/2(36x)+16 | | 3x0.02=0.06 | | 3/4(4x-12)=24 | | 10-8d=-10-6d | | 8-x=4(x-3) | | X+9+x+12=21 | | 24/x+42=9x | | /7x–9=26 | | 7/9=56/x | | 0.08x+1.2=4/4 | | 13w+19w-5+4=-5w+4-5 | | 2x+3×3x+4=18 | | -3(x+8)=0 | | 7i−6=71 | | 1/2x+2/3=3/23 | | 5x-7=2x+2x | | -8r=-7r-9 | | 5v+8=3v-8 | | 5v=8=3v-8 |